

IPv6 e a Evolução da Internet

Agosto de 2001

Adailton Silva

Diretor de Tecnologia adailton@icomnet.com.br

Consultor do Programa Socinfo
Consultor da Rede Nacional de PEsquisa

Copyright ® 2001 da IComNet TI Todos os direitos reservados

Agenda

- Motivação/Histórico
- Formato e Tipos de Endereços
- Destaques
- Estratégias para Transição
- 6Bone IETF
- Iniciativas Brasileiras
- Cenário Mundial e Tendências
- Internet de Nova Geração

Frases Famosas

- "I think there is a world market for maybe five computers."
 - Thomas Watson, chairman of IBM, 1943
- "640K ought to be enough for anybody."
 - Bill Gates, 1981
- "32 bits should be enough address space for Internet"
 - Vint Cerf, 1977 (Honorary Chairman of IPv6 Forum 2000)

Motivação para IPv6

- Rápido crescimento da Internet
- Escassez de endereços v4
- Explosão da tabela de rotas
- Falta de segurança
- Sistema celulares IP
- Falta de mobilidade
- Necessidade de redes de alto desempenho

- Vários anos de experiência em TCP/IP
- Novas aplicações multimídia
- Entretenimento em redes: TVs, Games, etc.
- Soluções mais escaláveis
- Residências inteligentes
- Tudo sobre IP, sempre conectado

Breve Histórico

- 1992 IAB com CLNP/ISO TUBA (TCP and UDP over Bigger Addresses);
- IPv7 ou TCP/IX (mudanças no TCP e no IP, simultaneamente, e um novo protocolo de roteamento chamado RAP);
- **IP in IP**: modificado em 1993, passando a se chamar IPAE (IP Address Encapsulation);
- IPAE: adotado como estratégia de transição para o SIP.
- SIP (Simple IP): espaço de endereçamento cresce para 64 bits e muitos detalhes obsoletos do IP são removidos;
- PIP (Paul's IP): uma estratégia inovadora baseada em listas de diretivas de roteamento (permite política de roteamento eficiente e implementação de mobilidade);
- 1994 SIPP (SIP Plus): fusão de SIP e do PIP;
- Julho de 1994 IPv6: IPng sugere SIPP como base do novo IP, porém com algumas modificações, como por exemplo, o endereço que passa de 64 bits para 128 bits.

Formato de Endereços

 O IPv6 é representado por 8 campos de endereços de 16 bits (em forma hexadecimal), separados por dois pontos

1080:0:0:0:8:800:200C:417A

Tipos de Endereços

- Unicast
- Multicast FF01::43
- Anycast (Cluster, Aplicações Especiais, etc.)

O que muda?

IPv4 Header

Version	IHL	Type of Service	Total Length			
Identification			Flags	Fra	gment Offset	
Time to	Live	Protocol	Header Checksum			
Source Address						
Destination Address						
Options					Padding	

IPv6 Header

Version	Class	Flow Label						
Payload Length			Next Header	Hop Limit				
Source Address								
Destination Address								

IPv6

Nova Estrutura de Cabeçalho

- Cabeçalho fixo com apenas 6 campos (antes com 10): version (4 bits), priority (4 bits), flow label (28 bits) e payload lengh(16 bits);
- Remoção dos campos header lengh, type of service, identification, flags, fragment offset e header checksum e da segmentação hop-by-hop;
- Outros foram ligeiramente modificados: length, protocol type e time-to-live;
- Serviços especiais opcionais: extension headers.

Destaques

- Mobilidade
- Segurança Nativa (IPSec: AH e ESP)
- Multicast, Anycast e Multiprotocolo
- QoS, Multimídia (Flow Label)
- Plug 'n play (stateless & statefull auto-configuration)
- Arquitetura de endereçamento melhor estruturada
- Suporte para Jumbo Datagrams

IPv6

Desempenho nos Roteadores

- Não há cálculo do tamanho do cabeçalho;
- Não há cálculo do checksum do cabeçalho;
- Não há procedimentos de fragmentação/montagem;
 - O cálculo da MTU mínima é feito hosts end-to-end (Path MTU Discovery);
 - Se o caminho de MTU mínima muda, o roteador intermediário encapsula (fragmenta) o pacote original IPv6 em outros pacotes IPv6 menores.

Extension Headers

IPv6 Header	TCP Header
NextHeader=	+
TCP	Data

IPv6 Header	Routing Header	TCP Header	
NextHeader=	NextHeader=	+	
Routing	TCP	Data	

- Um header obrigatório (base header)
- Headers adicionais optativos (extension headers)

Estratégias para Transição

- Migração de todos os servidores DNS (de "A" para "AAAA")
- Pilha dupla (IPv4 e IPv6) em todos os roteadores e hosts
- Mecanismo de transição já embutido no IPv6
- Incluído mecanismos para IPv6/IPv4
- Incluído mecanismo para IPv4/IPv6

6Bone IETF NGTrans WG

- Testbed para definir o processo de transição das redes IPv4 para IPv6
- Definir mecanismos opcionais e mandatórios a serem implementados pelos fabricantes p/ que a transição ocorra
- Articular um plano operacional para a transição do IPv4 para o IPv6

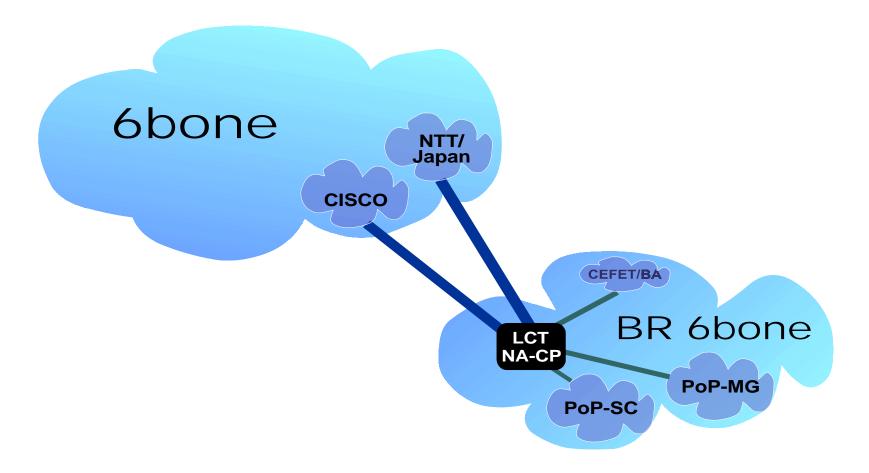
6Bone IETF NGTrans

- Operacional desde Julho de 1996
- Mais de 53 países (antes 35)
- Ilhas IPv6 num oceano IPv4, conectadas por túneis

http://www.6bone.net

Iniciativas Brasileiras

Backbone IPv6 de Testes



- Iniciado janeiro de 98, como um endereço pTLA (6Bone/NGTrans)
- Em abril de 1998: túnel IPv6/IPv4 com a Cisco/6Bone (San Jose/USA) e NTT (Japão) em outubro/98.
- 05 túneis internacionais
- 13 pontos/túneis nacionais

Iniciativas Brasileiras em v6

Backbone IPv6 de Testes

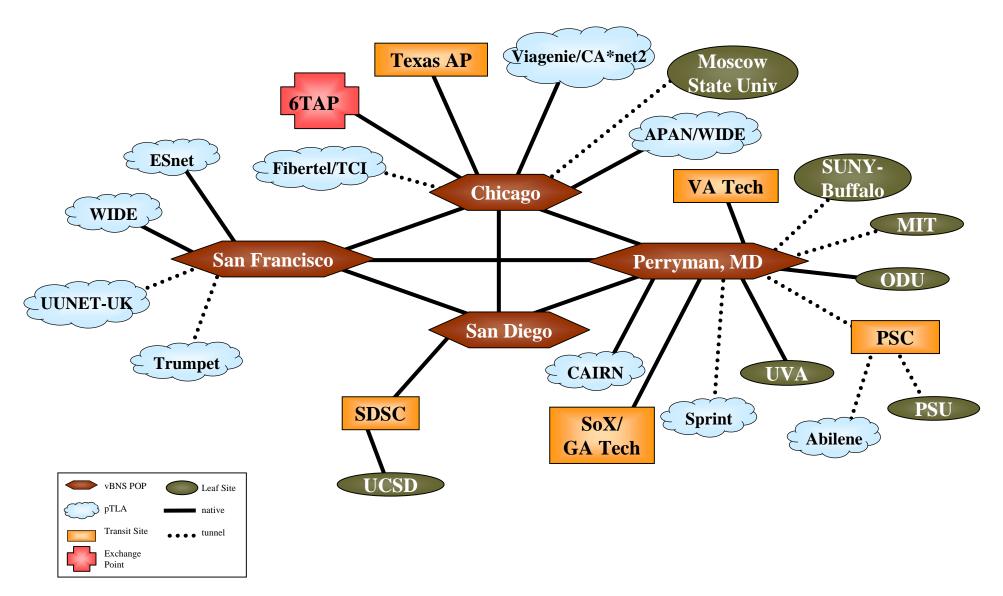
Iniciativas Brasileiras

Backbone de Produção RNP2

- 04 POPs: RJ, SP, RS e RN
- Roteadores com pilha dupla (Cisco IOS 12.2(2T)
- RIPNG e BGP4+
- Endereçamento ARIN
- Integração com Br-6Bone
- Peering com 6TAPs

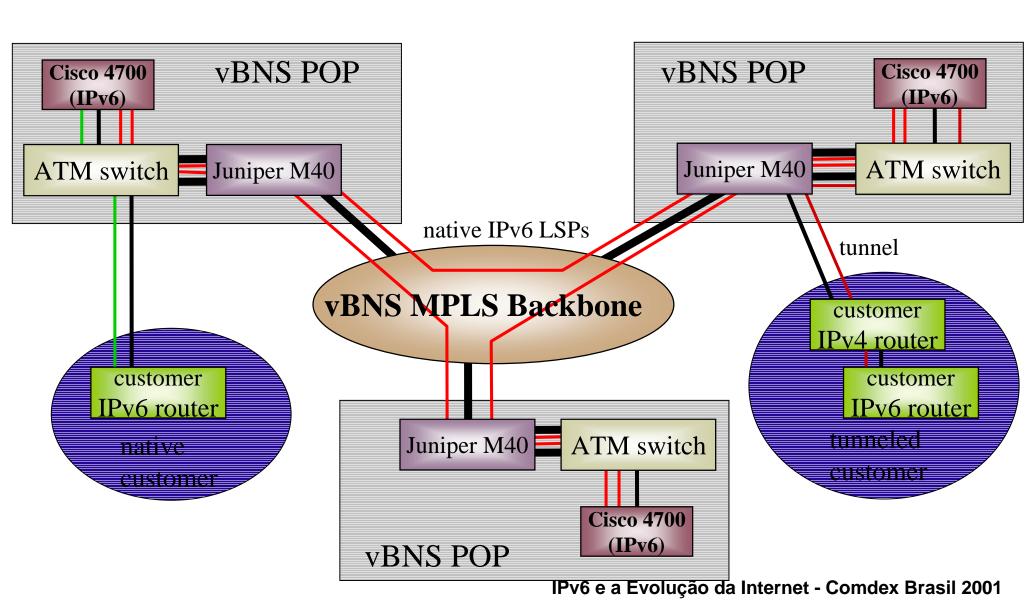
Cenário Mundial v6

Backbones Comerciais


- EUA: MCI WorldCom (vBNS)
- Europa: Telia (06/2001), Telecom Italia (07/2001), BT e NTT (UK),
- Asia: NTT e TAHI
- Outros

Backbones Acadêmicos/Experimentais

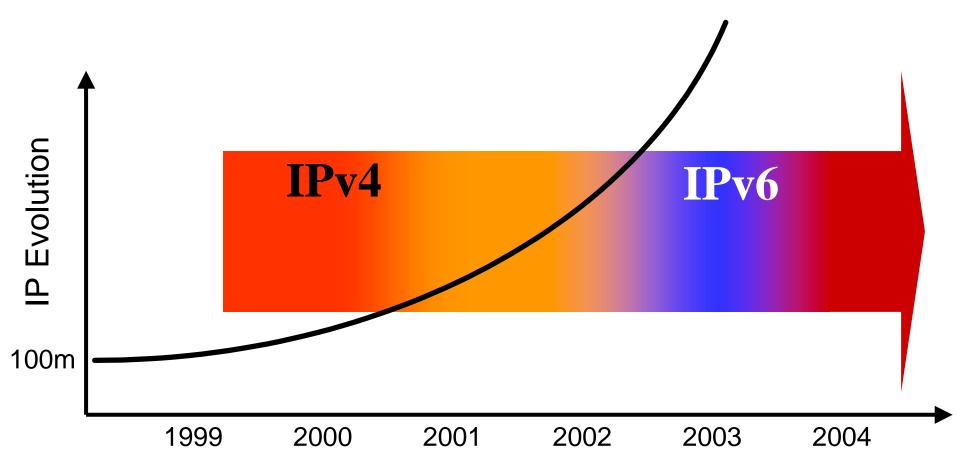
- 6Bone, Abilene/I2, NTT, 6REN, RNP2, 6INIT, GPv6
- CA*NET2, TEN155, 6WINIT, LONG, etc.
- Outros (dezenas)



Rede Lógica vBNS

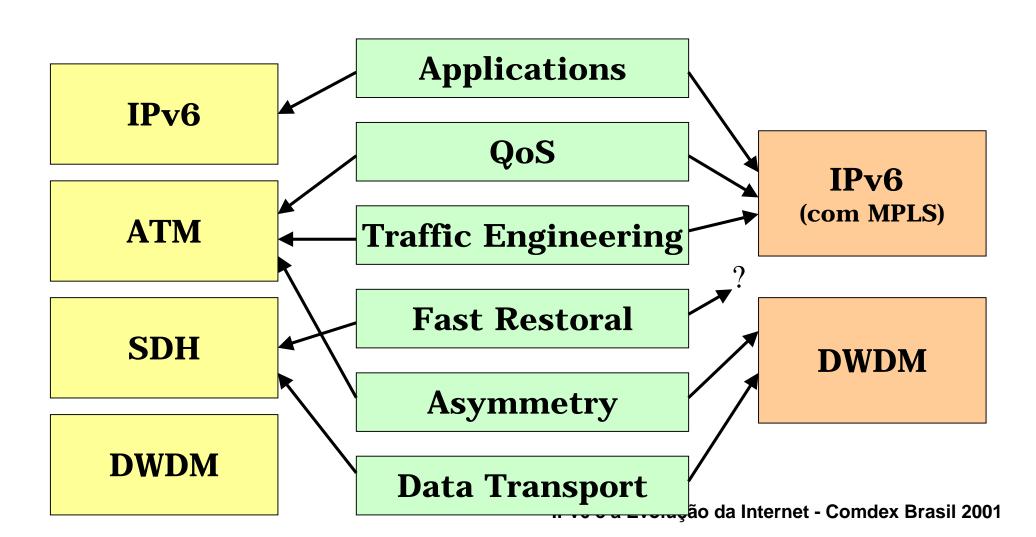
Trunking IPv6 sobre MPLS

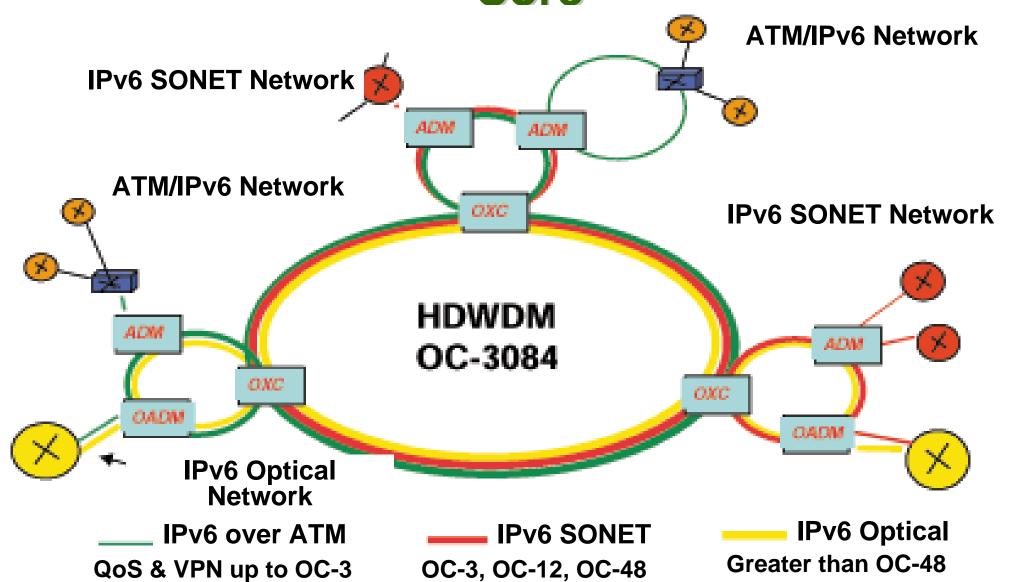
IPv6 Forum


IPv6 Internet Protocol Comes of Age (Japão/2001)

- Equipamentos IPv6 nas residências a partir do 20. semestre de 2001 até 2003
- Desenvolvimento em 3 fases:
- Fase 1: Desenvolvimento de gateways residenciais;
- Fase 2: Residência conectada com equipamentos (TVs, games, etc.) IPv6 (final de 2001);
- Fase 3: Telefones móveis IPv6

Internet de Nova Geração




Internet de Nova Geração

Internet Ótica Simplificada com MPLS

Próxima Geração Internet Core

... tudo conectado em IPv6, sempre

IComNet Tecnologia da Informação http://www.icomnet.com.br adailton@icomnet.com.br

Programa Sociedade da Informação - SociInfo adailton@socinfo.org.br

Rede Nacional para o Ensino e de Pesquisa - RNP adailton@rnp.br

Muito Obrigado

www.icomnet.com.br